Crystal Structure of a Functional Dimer of the PhoQ Sensor Domain*S⃞
نویسندگان
چکیده
The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg2+, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.
منابع مشابه
Design and Simulation of a New Highly Sensitive Gas Sensor Based on Negative Refraction Photonic Crystal
In this paper, design and simulation of a new highly sensitive gas sensor based on a hybrid photonic crystal (PC) structure, containing negative and positive refractive index sections, is presented. It has been shown that using a PC with negative refraction in the first section, the transmitted power is concentrated on the entrance of the sensing channel, and the transmission of the proposed se...
متن کاملDesign and simulation of a highly sensitive photonic crystal temperature sensor based on a cavity filled with the distilled water
In this paper design and two dimensional (2D) simulation of a photonic crystal highly sensitive temperature sensor is presented. The 2D simulations are based on finite-difference time-domain (FDTD) method and are done using Rsoft software. The device is constructed using a cavity filled with the distilled water located in the center of the photonic crystal waveguide. The operation of the propos...
متن کاملElucidating the Energetics of Bacterial Signal Transduction: Insights From Phoq
Bacteria transduce signals across the membrane using two-component systems, consisting of a membranespanning sensor histidine kinase and a cytoplasmic response regulator. The histidine kinase, PhoQ, serves as a master regulator of virulence response in S. typhimurium and E. coli. It also is inhibited by divalent cations, particularly Mg2+. While the periplasmic sensor domain of this protein has...
متن کاملCrystal Structure of Procaspase-1 Zymogen Domain Reveals Insight into Inflammatory Caspase Autoactivation*S⃞
One key event in inflammatory signaling is the activation of the initiator caspase, procaspase-1. Presented here is the crystal structure of the procaspase-1 zymogen without its caspase recruitment domain solved to 2.05 A. Although the isolated domain is monomeric in solution, the protein appeared dimeric in crystals. The loop arrangements in the dimer provide insight into the first autoproteol...
متن کاملFunctional reconstitution of the Salmonella typhimurium PhoQ histidine kinase sensor in proteoliposomes.
Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Biological Chemistry
دوره 283 شماره
صفحات -
تاریخ انتشار 2008